
Lab 8

Debugging

October 27th, 2010
James Marshall

10/27/10 jcmarsh@gwmail.gwu.edu 2

Previous Labs

● Lab 7
● Stacks
● Assignment 3

● Lab 6
● Command Line Arguments
● Recursion and CLA example

● Lab 4
● File I/O

10/27/10 jcmarsh@gwmail.gwu.edu 3

Assignment 3

● You have all the tools you need to finish.
● If you haven't started yet, you are behind.

10/27/10 jcmarsh@gwmail.gwu.edu 4

Remember Memory

● malloc
● free
● realloc

● http://opengroup.org/onlinepubs/007908775/xsh/realloc.html
● Read this!

http://opengroup.org/onlinepubs/007908775/xsh/realloc.html

10/27/10 jcmarsh@gwmail.gwu.edu 5

Motivation

● Debugging
● This is why you need to start early!
● Toughest part of coding

– Most common too
● Has potential to drive you insane
● C is not friendly

10/27/10 jcmarsh@gwmail.gwu.edu 6

Make Your Life Easier

● Small pieces of code.
● Write small, modular piece of code (function)
● Compile it
● Debug
● Test it
● Debug

● Repeat until program is finished
● Keep code as simple as possible

10/27/10 jcmarsh@gwmail.gwu.edu 7

Quote

 “Debugging is twice as hard as writing the
code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by
definition, not smart enough to debug it.”

-Brian Kernighan

● Unix contributor, Princeton professor

10/27/10 jcmarsh@gwmail.gwu.edu 8

Warning

● DO NOT:
● Write your entire program
● Compile it
● Test it

● Compiling and testing should be done
throughout.

10/27/10 jcmarsh@gwmail.gwu.edu 9

How to debug

● Compiler errors
● Testing
● Sanity Checks
● Seg faults!
● GDB

10/27/10 jcmarsh@gwmail.gwu.edu 10

Compiler Error

● Compile code often
● Learn compiler errors
● Remember, only trust first error listed

● Errors may hide errors
● Later errors may be caused by earlier errors

● Pitfalls
● Header files
● Semi-colons
● == vs. =

10/27/10 jcmarsh@gwmail.gwu.edu 11

Testing

● Compiling does not mean working!
● Run-time errors

● Exposed only when code is run, often only under
certain conditions

● Functional
● Does the program do what it is supposed to?

10/27/10 jcmarsh@gwmail.gwu.edu 12

Testing cont.

● Test your functions!
● Test each case, and corner cases

– ie: if {} else {}, From field with 50 characters
● Make sure the function does what you want it to

– Delete a message, find all of the appropriate messages

● Then Test your whole program
● This is why we give you example inputs.
● But remember that the examples aren't exhaustive

10/27/10 jcmarsh@gwmail.gwu.edu 13

Sanity Checks

● Program not behaving as expected? Don't
know why you are getting a run-time error?

● Make sure it's doing what you think it is.
● printf() - variables
● Trace by hand, compare to printf statements
● Start by testing large sections, then narrowing

down possibilities

10/27/10 jcmarsh@gwmail.gwu.edu 14

Segmentation Faults

● Something is wrong with memory.
● printf() is no good

● Statements may be reached, but will not finish
executing before seg fault.

● Comment out possible offending lines
● Many functions return NULL when they fail

● malloc
● fopen

10/27/10 jcmarsh@gwmail.gwu.edu 15

GDB

● GDB - GNU project DeBugger
● GNU – GNU is Not Unix

● Very powerful
● We'll look at a limited sub-set

● Can tell you what line causes a seg-fault

10/27/10 jcmarsh@gwmail.gwu.edu 16

Example fopen_ex.c

#include "stdio.h"

int main(int argc, char * argv[]) {

 FILE * file;

 int n;

 file = fopen("input.txt", "r");

 fscanf(file, "%d", &n);

 printf("Number: %d\n", n);

}

10/27/10 jcmarsh@gwmail.gwu.edu 17

GDB compiling

● Use g flag

● C compiling typically obscures useful
debugging information.

● gcc g o fopen fopen_ex.c

10/27/10 jcmarsh@gwmail.gwu.edu 18

Run GDB

● gdb fopen
● (gdb) run
● (gdb) backtrace

● Program crashes after run
● backtrace shows the function call stack

● Much less useful without g

10/27/10 jcmarsh@gwmail.gwu.edu 19

A Bit More GDB

● Run with arguments
● gdb fopen2
● (gdb) run arg1 arg2 ...

● Can set break points
● Print variables
● Examine memory address
● http://ace.cs.ohiou.edu/~bhumphre/gdb.html
● http://www.cs.cmu.edu/~gilpin/tutorial/

http://ace.cs.ohiou.edu/~bhumphre/gdb.html

10/27/10 jcmarsh@gwmail.gwu.edu 20

Review

● You are ready for assignment 3
● Start early, so you can ask questions early, and

find bugs early
● Debugging
● Testing
● GDB

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

